Short-pulse x-rays at the APS: Rapid Chemical and Physical Processes in Solution

Argonne National Laboratory Advanced Photon Source 9 May, 2008

Ed Castner
Department of Chemistry and Chemical Biology
Rutgers, The State University of New Jersey
ed.castner@rutgers.edu

A Survey of Some Time-Resolved X-ray Experiments on Condensed-Phase Chemical Systems

Anfinrud & Wulff- Photodissociation in Heme Protein Crystals

Wulff- Photodissociation of I₂, CH₃I and C₂H₄I₂

Bressler and Chergui- Excited State Dynamics of Ru(II)(bpy)₃

Rose-Petruck- Ligand dissociation of Fe₂(CN)₁₀

Chen- Ni(TPP) Excited-state Geometry Changes and Ligation

Schoenlein- Fe(II) Differential EXAFS

Marcus theory for (non-adiabatic) electron-transfer

Motivations: Photo-electrochemistry for solar energy conversion

$$k_{et} = \frac{2\pi}{\hbar} |H_{DA}|^2 \frac{1}{\sqrt{4\pi k_B T}} \exp\left(\frac{-(\lambda + \Delta G^{\circ})^2}{4\lambda k_B T}\right)$$
$$\lambda = \lambda_{\text{vibrational}} + \lambda_{\text{solvation}}$$

For large R_{DA} and low k_{et} , $\langle \mathbf{H_{DA}} \rangle \propto \exp{(-\beta \, \mathbf{R_{DA}})}$

For small R_{DA} , H_{DA} has strong angular dependence.

Transient solvation in dipolar liquids

ÇF₃

Transient solvation in dipolar liquids

ÇF₃

Laser-Induced Time-resolved X-ray Diffraction LITR-XRD (Bragg diffraction):

Structural response to photo-induced dipolar solvation response in a crystal

Ultrafast Changes of Molecular Crystal Structure Induced by Dipole Solvation

M. Braun, ¹ C. v. Korff Schmising, ² M. Kiel, ² N. Zhavoronkov, ² J. Dreyer, ² M. Bargheer, ² T. Elsaesser, ² C. Root, ¹ T. E. Schrader, ¹ P. Gilch, ¹ W. Zinth, ¹ and M. Woerner^{2,*}

Applications of Laser-Induced Time-Resolved X-ray Absorption Spectroscopy (LITR-XAS)

X-ray Absorption Spectroscopy: XANES and XAFS

L. X. Chen, Angewandte Chemie Int. Ed. 2004, 43, 2886-2905

Understanding the Complex Photophysics of Cu(I)(dmp)₂

George B. Shaw,^{†,‡} Christian D. Grant,^{§,II} Hideaki Shirota,[§] Edward W. Castner Jr.,^{§,*} Gerald J. Meyer,[⊥] and Lin X. Chen*,[†]

J. AM. CHEM. SOC. 2007, 129, 2147-2160 ■ 2147

Time-Resolved Emission of Cu(I)(dmp)₂ in CH₃CN Solution

Spin-interconversion from ¹MLCT to ³MLCT

and

geometric relaxation from tetrahedral Cu(I) to squareplanar Cu(II)

George B. Shaw,^{†,‡} Christian D. Grant,^{§,II} Hideaki Shirota,[§] Edward W. Castner Jr.,^{§,*} Gerald J. Meyer,[⊥] and Lin X. Chen*,[†]

J. AM. CHEM. SOC. 2007, 129, 2147-2160 ■ 2147

XANES of Cu(I)(dmp)₂ in solution

L. X. Chen, Annual Reviews of Physical Chemistry, 56, 221-254 (2005).

XAFS of Cu(I)(dmp)₂ in solution

L. X. Chen, Annual Reviews of Physical Chemistry, 56, 221-254 (2005).

Comparison electrochemical and Cu(I)DMP₂ excited state difference scattering patterns

First Experiment (!):

- Clear excited state difference scattering
- Excited-state reorganization differs from ground state Cu(I)/C(II) reorganization
- **Excited-state reorganization includes:**
 - Small angle: 5th ligand coordination (tris(hydroxymethyl)aminomethane)
 - High angle: heat + solvent reorganization

Applications of Laser-Induced Time-Resolved Small-Angle X-ray Scattering (LITR-SAXS):

Towards a Structural Understanding of Photo-induced Solvation and Charge-Transfer Processes in Ionic Liquids

Some Motivation for Understanding Structure and Dynamics in Ionic Liquids

$$F_3C - S - N - S - CF_3$$

High-density carrier doping minimum gate voltages high carrier mobility fast-switching, low-power OFETs

High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids

S. Ono, ^{1,a)} S. Seki, ¹ R. Hirahara, ² Y. Tominari, ² and J. Takeya^{2,3}

SAXS / WAXS Structural Analysis

(slide from D. Tiede, ANL)

X-ray scattering in different angle regimes provides information about all

levels of assembly structure

Small Angle X-ray Scattering (SAXS)

Size, shape, inter-particle correlations

$$\begin{split} \mathbf{I}\left(\mathbf{q}\right) &= \int \mathbf{p}\left(\mathbf{r}\right) \frac{\sin\left(\mathbf{q}\,\mathbf{r}\right)}{\mathbf{q}\,\mathbf{r}} \mathbf{dr} & \text{Guinier analysis to obtain electron-density weighted radius of gyration, R}_{g} \\ \mathbf{I}\left(\mathbf{q}\right) &= \mathbf{I}\left(\mathbf{0}\right) \exp\left(\frac{-\mathbf{q}^{2}\,\mathbf{R_{g}}^{2}}{3}\right) \end{split}$$

Wide Angle X-ray Scattering (WAXS)

Internal atomic distance correlations

$$\mathbf{I}\left(\mathbf{q}\right) = \left\langle \mathbf{A}(\mathbf{q})^* \mathbf{A}(\mathbf{q}) \right\rangle \sum_{\mathbf{j}} \sum_{\mathbf{k}} \mathbf{f_j}(\mathbf{q}) \mathbf{f_k}(\mathbf{q}) \frac{\sin(\mathbf{q} \, \mathbf{r_{jk}})}{\mathbf{q} \, \mathbf{r_{jk}}}$$

$$\mathbf{f}(\mathbf{q}) = \iiint d\mathbf{V} \cdot \rho(\mathbf{r}) \exp(-\mathbf{i}\mathbf{q}\mathbf{r})$$

$$\mathbf{I}\left(\mathbf{q}\right) = \int \mathbf{p}\left(\mathbf{r}\right) \frac{\sin\left(\mathbf{q}\,\mathbf{r}\right)}{\mathbf{q}\,\mathbf{r}} \mathbf{dr} \quad \begin{array}{l} \text{Pair distance distribution} \\ \text{function (PDDF)} \end{array}$$

Examples of some novel Ionic Liquids

H. Shirota and E. W. Castner Jr., *J. Phys. Chem. B* **2005**, *109*, 21576-21585 H. Shirota J. F. Wishart and E. W. Castner Jr., *J. Phys. Chem. B* **2007**, *111*, 4819-4829

Conformational Heterogeneity in Ionic Liquids

HIRO-O HAMAGUCHI AND RYOSUKE OZAWA

H. Hamaguchi and R. Ozawa, Adv. Chem. Phys., 131, 2005.

J. Phys. Chem. B **2006**, 110, 3330-3335

Nanostructural Organization in Ionic Liquids José N. A. Canongia Lopes[†] and Agílio A. H. Pádua^{‡,*}

C₄mim⁺/PF₆⁻ (c) **52.8** Å

Nanoscale Segregation in Room Temperature Ionic Liquids[†]

Alessandro Triolo,*,‡ Olga Russina,§ Hans-Jurgen Bleif,§ and Emanuela Di Cola

(Most-cited article in J. Phys. Chem. B for 2007)

Proposal:

LITR-SAXS studies of time-dependent translational dynamics in ionic liquids

Summary: Future Directions for Time-Resolved Structural Dynamics for Condensed-Phase Chemistry

Laser-Induced Time-Resolved X-ray Absorption Spectroscopy (LITR-XAS)

Laser-Induced Time-Resolved
Small-Angle X-ray Scattering (LITR-SAXS)

Laser-Induced Time-resolved X-ray Diffraction (LITR-XRD)